Revisiting the stability of computing the roots of a quadratic polynomial
نویسندگان
چکیده
We show in this paper that the roots x1 and x2 of a scalar quadratic polynomial ax2+bx+c = 0 with real or complex coefficients a, b c can be computed in a elementwise mixed stable manner, measured in a relative sense. We also show that this is a stronger property than norm-wise backward stability, but weaker than element-wise backward stability. We finally show that there does not exist any method that can compute the roots in an element-wise backward stable sense, which is also illustrated by some numerical experiments.
منابع مشابه
A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملOn the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
متن کاملA STABLE COUPLED NEWTON'S ITERATION FOR THE MATRIX INVERSE $P$-TH ROOT
The computation of the inverse roots of matrices arises in evaluating non-symmetriceigenvalue problems, solving nonlinear matrix equations, computing some matrixfunctions, control theory and several other areas of applications. It is possible toapproximate the matrix inverse pth roots by exploiting a specialized version of New-ton's method, but previous researchers have mentioned that some iter...
متن کاملComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
متن کاملComputing Roots of Polynomials using Bivariate Quadratic Clipping
The paper presents a new algorithm to compute all real roots of a system of two bivariate polynomial equations over a given domain. Using the Bernstein-Bézier representation, we compute the best linear approximant and the best quadratic approximant of the two polynomials with respect to the L norm. Using these approximations and bounds on the approximation errors, we obtain a linear strip bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1409.8072 شماره
صفحات -
تاریخ انتشار 2014